Vibrational Spectra of Dimethylaminosulfonyl Chloride and Its C-Deuterated Derivative

Yukiko Tanaka, Yoshimasa Tanaka, Yutaka Saito, and Katsunosuke Machida*
Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-Naka Okayama 700
*Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku Kyoto 606
(Received October 15, 1977)

The infrared and Raman spectra of dimethylaminosulfonyl chloride and its C-deuterated derivative have been recorded in the liquid state. The fundamental frequencies have been assigned by referring to the band intensities, Raman depolarization ratios and isotopic frequency shifts. A normal coordinate analysis based on a planar C_s molecular model has been carried out by using a simple Urey-Bradley force field for stretching and bending coordinates and a valence force field for torsional coordinates. The calculated frequencies based on a refined set of force constants agree well with the observed ones.

Infrared and Raman spectra of dimethylaminosulfonyl chloride, (CH₃)₂NSO₂Cl, have been reported by Bürger et al.1) and Schneider et al.2) The latter authors have also carried out a normal coordinate analysis for the simplified 7 body model, C2NSO2Cl. There seems to remain, however, much ambiguity on assignments of several skeletal vibrations which are expected to couple with the methyl group modes. The present work has been undertaken to clarify this point by referring to the spectral change on deuterating the two methyl groups, and to compare the related force constants with those of other sulfonyl compounds. A normal coordinate analysis has been carried out for the complete molecular model including the motion of the hydrogen atoms. By using a refined set of 25 force constants, the observed frequencies of both the isotopic compounds have been reproduced satisfactorily.

Experimental

Materials. Dimethylaminosulfonyl chloride, DMSCl, was prepared by the reaction between sulfuryl chloride and dimethylamine hydrochloride (reagent grade).³) Dimethyl- d_6 -aminosulfonyl chloride, DMSCl- d_6 , was synthesized by the same reaction with the use of dimethyl- d_6 -amine hydrochloride (Merck AG., 98% deuterated), and distilled twice under reduced pressure (bp 83—85 °C at 25 mmHg). The isotopic purity of the product was estimated to be more than 98% by NMR spectra.

Measurements. The infrared spectra were measured in the liquid state on a JASCO DS 403G grating spectrophotometer. The absorption frequencies were calibrated by the standard absorptions of polystyrene, indene and water vapor. The Raman spectra were measured for the liquid samples sealed in 1 mm unheparinized haematocript tubes on a

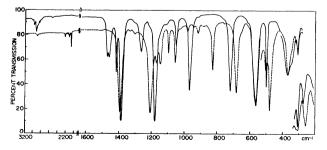


Fig. 1. Infrared spectra of DMSCl(——) and DMSCl- d_6 (----).

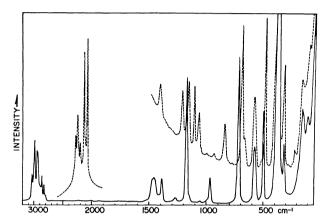


Fig. 2. Raman spectra of DMSCl (——) and DMSCl- d_6 (----).

JEOL S-1 laser Raman spectrophotometer. The 488.0 nm line of a Coherent 52G Ar⁺ laser was used as the excitation source.

The infrared spectra are shown in Fig. 1 and the Raman spectra in Fig. 2. The observed frequencies are listed in Table 1 together with approximate band intensities and assignments.

Vibrational Assignments

The fundamental frequencies of dimethylaminosulfonyl chloride were given rough assignments by Bürger et al.1) and Schneider et al.2) on the assumption that the vibrations of the methyl hydrogen atoms were virtually independent of the skeletal vibrations of the molecule. The spectral change on the C-deuteration of the methyl groups in this work revealed, however, that there are considerable vibrational couplings between the methyl groups and the other part of the molecule. The infrared bands at 1470 and 1459 cm⁻¹ and the Raman band at 1456 cm⁻¹ are assigned clearly to the CH₃ asymmetric deformation vibrations and the infrared band at 1416 cm⁻¹ to the CH₃ symmetric deformation. On the C-deuteration, these bands disappear and the corresponding bands due to the CD3 groups appear around 1150, 1100, and 1060 cm⁻¹. At the same time the strong infrared and Raman bands at 1177 cm⁻¹ due certainly to the SO₂ symmetric stretching vibration shift to 1207 cm⁻¹. In the infrared spectrum no appreciable change in relative intensity is observed with these fre-

Table 1. Observed frequencies and assignments

	$(CH_3)_2NSO_2Cl$			$(\mathrm{CD_3})_2\mathrm{NSO}_2\mathrm{Cl}$	
IRa)	Ramana, b)	Assignments ^{c)}	IR ^{a)}	Raman ^{a,b)}	Assignments ^{c)}
2970 vw	∫2970 s , p	$v_{\mathrm{a}}\mathrm{CH}_{3}(\mathrm{a}^{\prime},\!\mathrm{a}^{\prime\prime})$	2230 vw	2241 m, p	$\nu_{ m a}{ m CD}_{ m 3}({ m a}^\prime,{ m a}^{\prime\prime})$
	(2950 s , p		2070 vw	∫2115 s , p	$\nu_{ m s}{ m CD_3}({ m a',a''})$
2860 vw	2860 m, p	$v_{\rm s}{ m CH_3}({ m a',a''})$		(2075 s , p	- 0(, ,
1470 m		$\delta_{ m a} { m CH_3}({ m a}^\prime,{ m a}^{\prime\prime})$	1395 vs	1400 m, dp	$\nu_{ m a} { m SO}_2({ m a}^{\prime\prime})$
1459 m	1456 wb, p	$\delta_{ m a} { m CH_3}({ m a}^\prime,{ m a}^{\prime\prime})$	1207 vs	1207 m, p	$v_{\rm s}{ m SO}_2\!+\!v_{\rm s}{ m CNC}({ m a}')$
1416 m	_	$\delta_{ m s} { m CH_3}({ m a}^\prime, { m a}^{\prime\prime})$	1173 m		$v_a \text{CNC} + \delta_s \text{CD}_3(a^{\prime\prime})$
1385 vs	1387 m, dp	$ u_{\mathrm{a}}\mathrm{SO}_{\mathrm{2}}(\mathrm{a}^{\prime\prime})$	1153 m	1155 m, p	$v_{ m s} { m SO}_2 \! + \! \delta_{ m s} { m CD}_3 \ + v_{ m s} { m CNC}({ m a}')$
1264 m	1270 vw, p?	v skel + $ ho$ CH $_3(a')$	1099 w	1102 m, p	$\delta_{\rm s}{\rm CD_3} + \nu {\rm SN(a')}$
1177 vs	1177 s , p	$\int v_{ m s} { m SO}_2({ m a}')$	1057 m	1065 m, p	$\delta_{ m a}{ m CD}_{ m a}({ m a}^\prime,{ m a}^{\prime\prime})$
		$\{ u_{ m a}{ m CNC} + ho{ m CH_3}({ m a}^{\prime\prime})$	982 w	990 vw, dp	$\delta_{\rm a}{\rm CD_3} + \delta_{\rm s}{\rm CD_3}({\rm a^{\prime\prime}})$
1115 vw	_	$ ho\operatorname{CH}_3(\mathrm{a}')$	919 w	920 vw, p	$ ho\operatorname{CD}_3(\mathrm{a}')$
1049 m	1053 vw, ?	$ ho\operatorname{CH}_3(\mathrm{a}^{\prime\prime})$	827 m	835 vw, dp	$ ho\operatorname{CD}_3(\mathrm{a}^{\prime\prime})$
966 s	967 w, p	$\begin{cases} \rho \text{CH}_3 + \nu_{\text{s}} \text{CNC}(\text{a}') \\ \rho \text{CH}_3 + \nu_{\text{a}} \text{CNC}(\text{a}'') \end{cases}$	755 vw	760 vw, ?	$\begin{cases} ho \text{CD}_3 + v \text{skel}(\mathbf{a}') \\ ho \text{CD}_3 + v_{\mathbf{a}} \text{CNC}(\mathbf{a}'') \end{cases}$
716 s	718 vs, p	$v \mathrm{SN} + v_\mathrm{s} \mathrm{CNC}(\mathrm{a'})$	682 s	684 s , p	$vSN + v_sCNC(a')$
562 s	576 s , p	$\beta SO_2 + \nu SCl(a')$	561 s	575 m, p	$\beta SO_2 + \nu SCl(a')$
-	_	$\delta ext{skel} + ho ext{SO}_2(a^{\prime\prime})$	505 m	510 sh, ?	$\delta \text{skel} + \rho SO_2(a^{\prime\prime})$
500 s	504 s , p	$\omega SO_2 + \nu SCl(a')$	478 m	480 m, p	$\omega SO_2 + \nu SCl(a')$
369 m	374 vs, p	$(vSCl + \omega SO_3(a'))$	369 m	374 vs, p	$\nu SCl + \omega SO_2(a')$
	, 1	$\delta \operatorname{skel}(\mathbf{a}')$	$318\mathrm{sh}$		$\delta \text{skel}(\mathbf{a}')$
309 w	315 w, dp	$t\mathrm{SO}_2(\mathrm{a}^{\prime\prime})$	309 w	315 w, dp	$t\mathrm{SO}_2(\mathbf{a''})$
276 w	_	$\delta \mathrm{skel}(\mathbf{a}')$	257 w	_ , 1	$\delta \operatorname{skel}(\mathbf{a}')$
_		$ ho SO_2 + tCNC(a^{\prime\prime})$	_	218 vw, dp	$ ho SO_2 + tCNC(a^{\prime\prime})$
	153 m, p	$\delta \text{skel}(\mathbf{a}')$		150 m, p	$\delta \operatorname{skel}(\mathbf{a}')$
	105 w, ?	$ au \mathrm{SN}(\mathrm{a}^{\prime\prime})$		95 w, ?	$ au \mathrm{SN}(\mathrm{a}^{\prime\prime})$

a) vs, very strong; s, strong; m, medium; w, weak; vw, very weak; b, broad; sh, shoulder. b) p, polarized; dp, depolarized. c) v, stretching; β , bending; δ , deformation; ρ , rocking; ω , wagging; t, twisting; τ , torsion.

quency shifts, while in the Raman spectrum the intensity of the 1177 cm⁻¹ band of DMSCl seems to be partitioned among the 1207, 1155, and 1102 cm⁻¹ bands of DMSCl-d₆. This result suggests that the SO₂ symmetric stretching vibration of DMSCl- d_6 couples strongly with the CD₃ deformation vibrations. On the contrary, the SO₂ asymmetric stretching band around 1390 cm⁻¹ undergoes only a slight isotope shift in both the infrared and Raman spectra. The infrared band at 1264 cm⁻¹ assigned previously to the CH₃ rocking vibration^{1,2)} proved to disappear on the C-deuteration. According to the calculated normal modes, the contribution of the skeletal stretching vibrations to this band is also important. The infrared bands at 1115, 1049, and 966 cm⁻¹ vanishing on the C-deuteration were assigned to the CH₃ rocking vibrations and were classified into the a' and the a'' species by referring to the depolarization ratios of the corresponding Raman bands and the results of a preliminary calculation. The 1049 and the 966 cm⁻¹ bands were assigned to the skeletal stretching vibrations by the previous authors.^{1,2)} Similarly, the infrared bands at 919, 827, and 755 cm⁻¹ of DMSCl- d_6 newly appearing on the C-deuteration were assigned to the CD3 rocking vibrations. The infrared band at $716~\mathrm{cm^{-1}}$ of DMSCl shifts to $682~\mathrm{cm^{-1}}$ on the C-deuteration and can be assigned to the S-N stretching vibration in agreement with the assignment of Bürger et al.1) According to the calculated normal modes, the S-N stretching vibration contributes also to the infrared

bands at 1264, 1177 and 966 cm⁻¹ of DMSCl and at 1207, 1153, 1099, and 755 cm⁻¹ of DMSCl- d_6 .

The polarized Raman band at 374 cm⁻¹ is extremely strong and remains unshifted on the C-deuteration. This band is assigned certainly to the S-Cl stretching vibration from analogy with the spectra of CH₃SO₂Cl and CD₂SO₂Cl.⁴⁾ The previous authors assigned this band to the C-N-C deformation vibration, 1,2) but such a strong band is missing in the Raman spectrum of (CH₃)₂NSO₂NH₂.⁵⁾ On the C-deuteration of DMSCl, the infrared bands at 562 and 309 cm⁻¹ remain unshifted but those at 500 and 276 cm⁻¹ shift to lower frequencies by about 20 cm⁻¹. By referring to the Raman depolarization ratios and the assignments of the related compounds, 4,6-9) the 562, 500, and 309 cm⁻¹ bands were assigned to the SO₂ bending, wagging and twisting vibrations, respectively, and the 276 cm⁻¹ band to the skeletal deforamtion vibration. The present as-

TABLE 2. PRODUCT AND MODIFIED SUM RULES

	Product r	ule ratios ^{a)}	M I'C 1		
	$\mathrm{Obsd}^{\mathrm{b}}$	Calcd	Modified sum rule ^{c)}		
a'	19.693	20.634	$1.5534 \times 10^7 \text{ (cm}^{-1)^2}$		
a''	19.760	19.828	$1.5492 \times 10^{7} \text{ (cm}^{-1})^{2}$		

a) $\Pi(\nu_i DMSCl/\nu_i'DMSCl-d_6)$. b) The calculated frequencies were used in place of the unobserved frequencies. c) $\Sigma(\nu_i DMSCl)^2 - \Sigma(\nu_i'DMSCl-d_6)^2$.

Table 3. Force constants (in mdyn/Å)

K(SO)	9.7231	K(SN)	3.0103	K(SCl)	1.4399	K(CN)	2.5803	K(CH)	4.573a)
H(OSO)	1.099_{3}	H(OSN)	0.115_{6}	H(OSCI)	0.141_{0}	H(NSCl)	0.213^{a}	H(SNC)	0.243_{1}
H(CNC)	0.091_2	H(NCH)	0.357_{4}	H(HCH)	0.457_9	F(OSO)	-0.581_{4}	F(OSN)	1.657_{4}
F(OSCl)	0.402^{a}	F(NSCI)	0.200^{a}	F(SNC)	0.685_1	F(CNC)	0.703^{a}	F(NCH)	0.372_{8}
F(HCH)	-0.037_{0}	$\kappa(S)^{b}$	0.022^{a}	$\kappa(\mathbf{C})^{\mathrm{b}}$	-0.048_{8}	$ au(\mathrm{SN})^{\mathrm{c}}$	0.279_{4}	$ au(\mathrm{CN})^{\mathrm{c}}$	0.090^{a}

a) Assumed. b) in mdyn Å. c) Torsional constant in mdyn Å/rad².

signments of the SO_2 deformation vibration are considerably different from those of the previous authors.^{1,2)} An infrared band at $505~\rm cm^{-1}$ and a Raman band at $218~\rm cm^{-1}$ of DMSCl- d_6 newly appearing on the C-deuteration are assignable to the a'' skeletal deformation and the SO_2 rocking vibrations, respectively. The corresponding bands of DMSCl seem to be overlapped by the neighboring bands at the higher frequency side. The weak Raman band at $105~\rm cm^{-1}$ of DMSCl is assigned to the S–N torsional vibration since the observed shift to $95~\rm cm^{-1}$ on the C-deuteration is too small for the CH_3 torsion. No bands assignable to the CH_3 or the CD_3 torsional vibrations were observed.

Normal Coordinate Analysis

Following Schneider et al.,2) we assumed that dimethylaminosulfonyl chloride takes the C_s structure in which each SO bond is at the trans position of a CH3-N bond. In this model, the normal modes of DMSCl are classified as 18a' + 15a''. The structure parameters used in the calculation are shown in Fig. 3. The bond lengths and the valence angles related to the C2NS skeleton were taken from tetramethylsulfuric diami $de^{10)}$ and those related to the SO_2 group from sulfuryl chloride.¹¹⁾ The tetrahedral angle was assumed for the methyl group. The local symmetry coordinates were constructed in the usual form¹²⁾ and the redundant coordinate associated with the -SO₂- group was eliminated numerically on diagonalizing the G matrices. The torsional coordinates were those defined by Miyazawa and Fukushima.¹³⁾

A simple Urey-Bradley force field including 25 force constants was employed for the stretching and the bend-

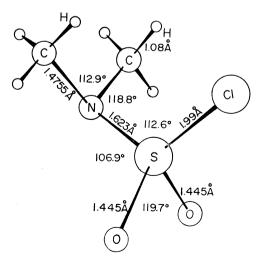


Fig. 3. Molecular structure and structural parameters.

ing coordinates and a valence force field for the torsional coordinates. Initially, the force constants for the $(CH_3)_2N-$ group were transferred from methylamine, ¹⁴) those for the $-SO_2Cl$ group from sulfuryl chloride⁷ and those around the S-N bond from sulfuric diamide.⁹ The torsional force constants $\tau(C-N)$ and $\tau(S-N)$ were assumed to be equal to the constants for the C-C and the C-S torsional coordinates of dialkyl disulfide, ¹⁵) respectively. On refining the force constants, the observed frequencies were taken mostly from the infrared

Table 4. Fundamental frequencies of DMSCl and DMSCl- $d_{\rm g}$

	DM	SCI	$\mathrm{DMSCl} ext{-}d_{6}$		
	Obsd	Calcd	Obsd	Calcd	
a'	2970	2981	2230	2222	
	2970	2979	2230	2215	
	2860	2849	2070	2053	
	1470	1476	1207	1228	
	1459	1471	1153	1159	
	1416	1440	1099	1107	
	1264	1238	1057	1053	
	1177	1166	1057	1029	
	1115	1109	919	888	
	966	960	755	792	
	716	725	682	665	
	562	563	561	559	
	500	505	478	490	
	369	369	369	364	
	369	365	318	335	
	276	290	257	267	
		196		140	
	153a)	117	150a)	108	
a''	2970	2980	2230	2217	
	2970	2979	2230	2215	
	2860	2848	2070	2050	
	1470	1467	1395	1391	
	1459	1462	1173	1175	
	1416	1430	1057	1055	
	1385	1390	1057	1041	
	1177	1163	982	1019	
	1049	1057	827	813	
	966	992	755	793	
		512	505	483	
	309	305	309	302	
		252	218a)	235	
	_	200	_	144	
	105^{a}	105	95ª)	94	

a) Raman frequency.

data. These frequencies satisfied the isotopic product rule¹⁶⁾ and the modified sum rule¹⁷⁾ fairly well as shown in Table 2. The force constants were refined first by referring to the Jacobian matrix elements, and then by the method of least squares. The final set of the force constants is listed in Table 3, and the calculated frequencies are compared with the observed ones in Table 4.

In support of the empirical assignments given in the preceding section, the observed shifts of the skeletal frequencies below 750 cm⁻¹ on the C-deuteration were reproduced well by the calculation. The stretching constant K(SN) is appreciably smaller than the corresponding constants of NH₂SO₂NH₂9) and CH₃SO₂-NH₂,⁶⁾ probably because the electron drawing effect of the chlorine atom tends to reduce the S-N bond order. The constant K(SCI) is also smaller than that of CISO₂Cl⁷) but is comparable with that of CH₂SO₂Cl.⁴) The value of K(SO) is close to the average of those of NH₂SO₂NH₂⁹⁾ and ClSO₂Cl,⁷⁾ reflecting well the intermediate structure, NSO₂Cl, of DMSCl. Regarding K-(SO), it may be also pointed out that CH₃SO₂NH₂,⁶) CH₃SO₂CH₃⁸⁾ and NH₂SO₂NH₂⁹⁾ are all alike while DMSCl resembles CH₃SO₂Cl.⁴⁾ Thus, the effect of the NR₂(R=H or CH₃) group on the S-O bond order is similar to that of the CH₃ group, and in this respect the SO₂ group differs markedly from the C=O group as pointed out by Bellamy and Williams. 18)

The authors wish to express their sincere gratitude to Professor Toyozo Uno of Kyoto University for his encouragement throughout this work and to Mr. Akimasa Iwado of Okayama University for the measurement of the NMR spectra. The calculation in this work was performed on FACOM 230 series computers

at Data Processing Center, Kyoto University and on a NEAC 2200/500 computer at Okayama University Computer Center.

References

- 1) H. Bürger, K. Burczyk, A. Blaschette, and H. Safari, Spectrochim. Acta, 27A, 1073 (1971).
- 2) W. Schneider, G. Kessler and H.-A. Lehmann, Z. Anorg. Allgem. Chem., 356, 239 (1968).
 - 3) N. C. Hansen, Acta Chem. Scand., 17, 2141 (1963).
- 4) K. Hanai, T. Okuda, and K. Machida, Spectrochim. Acta, 31A, 1227 (1975).
- 5) Y. Tanaka, Y. Saito, and K. Machida, unpublished data.
- 6) K. Hanai, T. Okuda, and K. Machida, *Spectrochim. Acta*, **31A**, 1217 (1975).
- 7) H. Toyuki and K. Shimizu, Bull. Chem. Soc. Jpn., 39, 2364 (1966).
- 8) T. Uno, K. Machida, and K. Hanai, Spectrochim. Acta, 27A, 107 (1971).
- 9) T. Uno, K. Machida, and K. Hanai, Spectrochim. Acta, 22, 2065 (1966).
- 10) T. Jordan, H. W. Smith, L. Lohr, Jr., and W. N. Lipscomb, J. Am. Chem. Soc., **85**, 846 (1963).
- 11) K. J. Palmer, J. Am. Chem. Soc., 60, 2360 (1938).
- 12) T. Shimanouchi, Nat. Stand. Ref. Data Ser., Bur. Stand., 6, (1967).
- 13) T. Miyazawa and K. Fukushima, J. Mol. Spectrosc., **15**, 308 (1967).
- 14) E. L. Wu, G. Zerbi, S. Califano, and B. Crawford, Jr., *J. Chem. Phys.*, **35**, 2060 (1961).
- 15) H. Sugeta, Spectrochim. Acta., 31A, 1729 (1975).
- 16) O. Redlich, Z. Phys. Chem., **B28**, 371 (1935).
- 17) K. Machida, J. Chem. Phys., 38, 1360 (1963).
- 18) L. J. Bellamy and R. L. Williams, *J. Chem. Soc.*, **1957**, 863.